18 research outputs found

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Analysis and simulation of the post-breakdown leakage current in electrically stressed TiO2/SiO2 gate stacks

    No full text
    The post-breakdown leakage current in electrically stressed metal-oxide-semiconductor structures with thin stacked layers of titanium dioxide (TiO2) over silicon dioxide (SiO2) Was investigated. The samples were obtained by plasma oxidation at room temperature. Multiple dielectric breakdowns were induced by the application of successive high-field voltage ramps. The resulting current-voltage characteristics were simulated using an equivalent electrical circuit model consisting in a diode with series and parallel resistances, which is solved using the Lambert W function. We show that after the first breakdown event the current that flows through the non-damaged gate stack area may still play a major role in determining the shape of the post-breakdown current-voltage characteristic. Similarities and differences with previous studied systems are discussed. (C) 2008 Elsevier B.V. All rights reserved

    Silicon Based Coplanar Capacitive Device for Liquid Sensor Applications

    No full text
    The development of silicon-based sensor devices has enabled the possibility to pursue novel integrated smart sensor technologies. Under this scenario, capacitive sensor devices are one viable option for implementing different kinds of applications. In this paper, an interdigitated coplanar capacitive device fabricated over a silicon substrate is presented and its potential use as liquid sensor is demonstrated. Additionally, a detailed capacitance model, which includes the parasitic capacitances introduced by the silicon substrate, was developed. The capacitance model has been theoretically validated through finite-element simulations as well as experimentally by comparison with fabricated devices. A polydimethylsiloxane mold has been fabricated and bonded to the sensor device with the aim of defining a cavity to collect the liquid sample into the device’s active region. The active capacitance component correlates to the electric field coupling between adjacent metal lines. Therefore, any change to the dielectric constant of the medium above the coplanar metal lines will produce a change to the device capacitance. Finally, the main guidelines for device performance improvement are depicted

    RF modeling of 40-nm triple-gate SOI FinFET

    No full text
    These last years, the triple-gate fin field-effect transistor (FinFET) has appeared as attractive candidate to pursue the complementary metal-oxide semiconductor technology roadmap for digital and analog applications. However, the development of analog applications requires models that properly describe the static and RF behaviors as well as the extrinsic parameters related to the three-dimensional FinFET architecture, in order to establish adequate design strategies. We demonstrate the feasibility of the compact model developed for symmetric doped double-gate metal-oxide-semiconductor field-effect transistor (symmetric doped double-gate MOSFET) to reproduce the experimental dc and RF behaviors for 40-nm technology node Silicon-on-Insulator triple-gate FinFETs. Extrinsic gate capacitances and access extrinsic resistances have been included in order to properly predict the transistor small-signal behavior, the current gain, and the maximum available power gain cut-off frequencies. Finally, the improvement of the FinFET RF characteristics by the reduction of the parasitics is addressed

    Parasitic gate capacitance model for triple-gate finfets

    No full text
    Triple-gate FinFETs have demonstrated to be promising candidates to push further the performance limits of the microelectronics industry, thanks to their high immunity to short-channel effects. However, owing to their 3-D nature, high parasitic gate capacitances appear that dramatically degrade their high-speed digital and analog/RF performances. Thus, in order to meet the International Technology Roadmap of Semiconductors projection, it is mandatory to find layout or technological solutions to reduce the total parasitic gate capacitance. In this context, it is necessary to develop a model that describes the parasitic capacitance in terms of the FinFET geometry. In this paper, a semianalytical extrinsic gate capacitance model for silicon-on-insulator triple-gate FinFET, based on 3-D numerical simulations, is presented. The model takes into account the external (five components) and internal (two components) fringing capacitances from the gate to the source/drain electrodes as well as the overlap capacitances. Comparisons with experimental results are presented to validate the developed model. Finally, based on the developed model, the evolution of the total parasitic gate capacitance as the channel length is reduced toward the 12-nm technology node is analyzed. © 1963-2012 IEEE

    Parasitic gate resistance impact on Triple Gate FinFET CMOS inverter

    No full text
    In this paper, based on a full intrinsic-extrinsic model for symmetric doped double-gate MOSFET, we analyze the impact of FinFET gate resistance over the inverter and ring oscillator performance. It is shown that, when the total number of fins remains constant, the propagation delay can be improved thanks to the multifinger configuration that translates into the gate resistance reduction. Furthermore, the fin spacing in addition to source/drain fin extension reduction are of primary importance to improve the digital circuit performance

    Extrinsic gate capacitance compact model for UTBB MOSFETs

    No full text
    Ultra-thin body and buried oxide transistors have gained attention as candidates for near future CMOS technology nodes. Recent studies have pointed out that the total parasitic gate capacitance becomes an important concern for very-high frequency performance. In this paper a semi-analytical model to describe the total extrinsic gate capacitance for ultrathin silicon body and buried oxide transistors is presented. The developed model considers the main technological parameters and has been verified by finite-element numerical simulations as well as by comparison with experimental measurements. The relative weight of the main parasitic components is addressed as well as their impact over the current gain cut-off frequency. Finally, the possibility to improve the cut-off frequency by about 35% due to the reduction of the parasitic gate capacitance is highlighted

    Impact of the Semiconductor Defect Density on Solution-Processed Flexible Schottky Barrier Diodes

    No full text
    Schottky barrier diodes, developed by low-cost techniques and low temperature processes (LTP-SBD), have gained attention for different kinds of novel applications, including flexible electronic fabrication. This work analyzes the behavior of the I&ndash;V characteristic of solution processed, ZnO Schottky barrier diodes, fabricated at a low temperature. It is shown that the use of standard extraction methods to determine diode parameters in these devices produce significant dispersion of the ideality factor with values from 2.2 to 4.1, as well as a dependence on the diode area without physical meaning. The analysis of simulated I&ndash;V characteristic of LTP-SBD, and its comparison with experimental measurements, confirmed that it is necessary to consider the presence of a density of states (DOS) in the semiconductor gap, to understand specific changes observed in their performance, with respect to standard SBDs. These changes include increased values of Rs, as well as its dependence on bias, an important reduction of the diode current and small rectification values (RR). Additionally, it is shown that the standard extraction methodologies cannot be used to obtain diode parameters of LTP-SBD, as it is necessary to develop adequate parameter extraction methodologies for them
    corecore